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Abstract. We give a brief introduction to equivariant homotopy theory. In

the non-equivariant setting, homotopy theory is concerned with topological

spaces up to weak equivalence. Before we can do equivariant homotopy the-
ory, we need an equivariant notion of weak equivalence. Through a selection of

examples, we present and try to motivate the relevant definitions. We then dis-

cuss Elmendorf’s Theorem and how it gives us a very nice, concrete model for
the ∞-category of G-spaces as presheaves on the orbit category. We conclude

by saying a few words about equivariance in families.

These notes were written for a talk I gave at the Harvard Babytop seminar
in Fall 2024, which was on Hill-Hopkins-Ravenel [2]. They are chiefly based on
Blumberg’s notes [1], although we avoid the language of model categories used
there. This was the first talk of the semester after the overview, and the purpose
of these notes is to give a concrete introduction to basic notions from the world of
equivariant homotopy theory which we need throughout the seminar. We focus on
examples. It will be important to understand the differences between Borel and
genuine equivariant G-spaces.

1. G-spaces, G-homotopy, G-CW complexes, and G-weak equivalences

Let G be a group. We restrict to the case where G is finite or compact Lie,
since these are the groups we understand well enough to do homotopy theory with.
Throughout these notes, let H denote a closed subgroup of G.

Some key examples we will be interested in throughout this seminar are

G = Cp, Cpn , S
1.

Today we’ll mostly stick to thinking about the examples G = ∗, C2, C2n , S
1.

Definition 1.1 (G-spaces). GTop is the category of G-spaces. As a 1-category,
it has objects X ∈ Top equipped with continuous, associative, unital G-action
µ : G × X → X. For example, associativity can be encoded as commutativity of
the diagram

G×G×X G×X

G×X X

1G×µ

m×1X µ

µ

where m is the multiplication in G. Morphisms in GTop are G-equivariant maps
f : X → Y , i.e. we require that the diagram

G×X G× Y

X Y

1G×f

µX µY

f

1
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commutes.

Remark 1.2. Here is another perspective on G-spaces. On Top, there is a monad
MG sending X 7→ G ×X. Then we may define GTop as algebras over MG. This
definition, while much less explicit, makes it clear that GTop is complete and co-
complete.

We are going to need the ∞-category of G-spaces, which you can think of as
being obtained from the 1-category by localising at G-weak equivalences (which we
will soon define). However, this model for the ∞-category of G-spaces turns out
not to be the most useful in practice. Elmendorf’s Theorem 2.3 will give us a better
one, as presheaves on the orbit category of G.

Notation 1.3. We use MapG(X,Y ) to denote the set of continuous G-equivariant
maps from X to Y . This is naturally a topological space, given the subspace
topology among all continuous maps X to Y , which we denote Map(X,Y ).

There is a G-action on Map(X,Y ) via conjugation, f 7→ g−1f(g · −). The G-
equivariant maps are precisely the fixed points under this action.

Definition 1.4 (Fixed points). For X a G-space, its H-fixed points are

XH = {x ∈ X | hx = x ∀ h ∈ H}.

These fixed points naturally have a residual action by NH/H.

Definition 1.5 (Isotropy groups). The isotropy group of x ∈ X is its stabiliser,
Gx = {g ∈ G | gx = x}.

Here are two very important examples of G-spaces.

Example 1.6 (Orbit spaces). The orbit space G/H is naturally a G-space, and it
satisfies

XH = MapG(G/H,X)

for any G-space X. That is, G/H corepresents taking fixed points by H.

The slogan to remember here is that orbit spaces play the role of points in
equivariant homotopy theory. This is going to come up later, for example when we
construct G-CW complexes.

Example 1.7 (Representation spheres). Let V be a finite-dimensional real repre-
sentation of G, i.e. G → O(V ) a group homomorphism. We denote by S(V ) the
unit sphere inside V . Since G acts orthogonally on V , then S(V ) is a G-space.
G also acts on the 1-point compactification of V , which we denote SV . This is a
based G-space, with basepoint coming from the compactification and fixed by the
G-action. We call SV a representation sphere because it generalises the spheres Sn

as follows.
Take V = Rn with the trivial G-action, and then SV = Sn is the 1-point

compactification of Rn. The induced G-action on Sn is the trivial one. We use
Sn = SRn

as our preferred model for the n-sphere, thought of equivariantly with
trivial action.

The fixed points of a representation sphere themselves form a representation

sphere, (SV )H ∼= S(V H). In particular, there are always at least two fixed points.
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Construction 1.8. Given a group homomorphism f : G → K, one obtains a
pullback f∗ : KTop→ GTop. This functor has both left and right adjoints,

KTop GTop
f∗

f∗

f!

with f! a f∗ a f∗. The right adjoint is f∗(X) = MapG(K,X) for a G-space X, with
K given a G-space structure via f . The left adjoint is f!(X) = K ×X/ ∼, where
(kf(g), x) ∼ (k, f(g)x) and the K-action comes from left multiplication on K.

In the special case K = ∗, then f!(X) = XG takes orbits and f∗(X) = XG

computes fixed points. Of course in this case f∗ gives a topological space the
trivial G-action.

Now we would like to try to do homotopy theory with G-spaces. That means
we need to find a sensible way to define homotopies and weak equivalences, G-
equivariantly.

Definition 1.9 (G-homotopy). A G-homotopy is a map h : X × I → Y in GTop,
where I is given the trivial G-action. That is, ht = h(−, t) is required to be a
G-equivariant map X → Y for every t ∈ I. As usual, we think of h as interpolating
between h0 and h1, and we say two G-equivariant maps f, g : X → Y are G-
homotopic if there exists such an h with h0 = f and h1 = g, denoted f ∼G g.
X and Y are G-homotopy equivalent if there exist maps f : X → Y, g : Y → X

with f ◦ g ∼G idY and g ◦ f ∼G idX .

Remark 1.10. This is all exactly the same as the usual definitions, except that
now we require the homotopy h itself to be G-equivariant. You can alternatively
think of h as a path in MapG(X,Y ).

Next we want to define G-CW complexes. In the non-equivariant setting, these
have cells Dn which are attached along their boundary Sn−1. In keeping with our
motto that orbit spaces G/H are points, in the equivariant setting we are going to
have cells of the form

G/H ×Dn attached along G/H × Sn−1

where the G-actions on Dn and Sn−1 are trivial. This means we have more than
one type of n-cell, allowing H to range over all closed subgroups of G. We build
G-CW complexes out of these cells in the usual way.

Definition 1.11 (G-CW complexes). A G-CW complex is a (sequential) colimit
of G-spaces Xn, where Xn+1 is formed as a pushout∐

G/H × Sn Xn

∐
G/H ×Dn Xn+1

with H varying over all closed subgroups of G.

Now that we know what cells look like, we may infer what the homotopy groups
of a G-space have to be. We have via an adjunction

[G/H × Sn, X] = [Sn,MapG(G/H,X)] = πn(XH) =: πHn (X)
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for any H. That is, equivariant homotopy groups are indexed by an integer together
with a subgroup of G.

Definition 1.12. (G-Weak equivalence) A map f : X → Y of G-spaces is a weak
equivalence if it induces isomorphisms on all the G-homotopy groups πHn . This is
the same as requiring that fH : XH → Y H is a topological weak equivalence, for
all closed subgroups H.

Remark 1.13. This is our first example of a genuine equivariant phenomenon. In
the Borel equivariant setting, one takes weak equivalences to be those maps which
induce isomorphisms on π∗

n. This is the same as a G-equivariant map which is a
weak equivalence on the level of underlying topological spaces. But for genuine
equivariant weak equivalences, we require something much stronger.

The idea of allowing different subgroups H for our cells G/H × Dn is that we
need the isotropy groups to vary. The isotropy group of G/H is H by construction.

How do we know that this notion of G-CW complex is reasonable? Well, one
of the most important facts about CW complexes in the non-equivariant setting is
the Whitehead theorem, and indeed it also holds equivariantly with more or less
the same proof.

Theorem 1.14 (Whitehead). If f : X → Y is a (genuine) weak equivalence of
G-CW complexes, then f is a G-homotopy equivalence.

As another sanity check, recall that we wanted orbit spaces G/H to behave like
points. A G-CW complex which has only 0-cells (i.e. is a disjoint union of points)
has the form

∐
iG/Hi, so a disjoint union of points is the same thing as a disjoint

union of orbit spaces.
Finally, an important property of CW complexes in the non-equivariant setting

is that many nice spaces we care about (e.g. smooth manifolds) have CW complex
structures. In that direction, here are some equivariant CW-approximation results.

Proposition 1.15 (Smooth G-manifolds are CW). For G a compact Lie group, ev-
ery closed smooth G-manifold admits a G-CW structure. Every smooth G-manifold
with boundary admits a G-CW structure in which the boundary is a subcomplex.

This is the best we could hope for – if we drop the smoothness hypothesis, this
is still an open question in the nonequivariant setting for compact manifolds of
dimension 4.

Proposition 1.16 (Representation spheres are CW). Every (finite-dimensional,
orthogonal) representation sphere admits a G-CW structure.

Here is a sampler platter of examples of G-CW complexes. The earlier ones are
more important. Keep in mind that for G a compact Lie group, there could be some
reasonable geometric sense in which G/H has positive dimension, so the n-cells in
a G-CW complex don’t always look like they have dimension n.

Example 1.17 (CW structure on a representation sphere). Let S1 act on V = R2

by rotation around the origin. This gives representations of each cyclic group
G = Cn, and also of S1, over V . The corresponding representation sphere is
(topologically) SV ∼= S2, with the Cn- or S1- action generated by rotation around
the axis passing through the poles 0,∞. These two poles are the fixed points of the
G-action in either case.

To build an S1-CW structure on SV , we have
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Figure 1. The Cn-CW structure on S2 with action by rotation
around a vertical axis, shown here for n = 8. The two 0-cells are
in blue and red, the 1-cell is in black, and the 2-cell is in grey.

• two 0-cells, one for each of the fixed points, of the form S1/S1 × ∗;
• one 1-cell, attached at each end to one of the fixed points, of the form
S1/e× I.

There are no other cells. Think of the single 1-cell as the orbit under the S1-action
of the half-meridian connecting the two poles. This fills in the whole surface of the
sphere. So although we are used to thinking of S2 as 2-dimensional, in this S1-CW
structure we have no 2-cells.

Now let’s build the Cn-CW structure for this action by rotation. We have

• two 0-cells, one for each of the fixed points, of the form Cn/Cn × ∗;
• one 1-cell, attached at each end to one of the fixed points, of the form
Cn/e× I;
• one 2-cell, attached to the one-cell, of the form Cn/e×D2.

The 1-cell here is the orbit of the half-meridian under the Cn-action, so we can
think of this as n copies of a half-meridian connecting the poles, equally spaced
around the sphere. The 2-cell is the orbit of one of the wedges lying between two
adjacent half-meridians under the Cn-action, so it amounts to n copies of this wedge.
Because Cn is 0-dimensional while S1 is 1-dimensional, the Cn-CW structure here
requires a 2-cell but the S1-CW structure does not. See Figure 1 for a diagram.

Example 1.18 (Antipodal C2-action on S2). S2 has another C2-action, the an-
tipodal one. Thinking of S2 as a C2-space in this new way, we get a different
C2-CW structure. It has:

• one 0-cell, of the form C2/e×∗, corresponding to the orbit of a single point
(i.e. some point together with its antipode);

• one 1-cell, attached at both ends to the 0-cell, of the form C2/e×I, forming
both halves of a meridian;

• one 2-cell, attached to the one-cell, of the form C2/e × D2, forming both
hemispheres.
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Figure 2. The D6-equivariant CW structure on a solid triangle.
Each cell is in a single colour. The 2-cell consists of the 6 grey
triangles.

This C2-action has no fixed points, and so the isotropy group of our 0-cell is different
from that in the previous example. In fact, this C2-space cannot be realised as
(is not weak equivalent to) a representation sphere, because every representation
sphere has at least an S0 worth of fixed points, realised by 0 and ∞.

Example 1.19 (S1-action on the torus). G = S1 acts on the torus S1 × S1 by
rotation in the first factor. This action has no fixed points, and we get an S1-CW
structure with

• one 0-cell, of the form S1/e× ∗;
• one 1-cell, attached at both ends to the 0-cell, of the form S1/e× I.

Since the torus is 2-dimensional and S1 is 1-dimensional, we should not be surprised
that we required only 0- and 1- cells here. Topologically, the 0-cell is embedded as
S1 × ∗ ⊂ S1 × S1 and the 1-cell is the orbit of ∗ × S1 under the S1-action.

Example 1.20 (D6-action on a triangle). Let T be a solid equilateral triangle in
the plane. Then the dihedral group D6 acts on T by reflections and rotations. The
corresponding D6-CW structure has

• three 0-cells:
– the centre of T is a fixed point, D6/D6 × ∗;
– the three vertices of T are an orbit, where each vertex is stabilised by

a reflection, so this 0-cell has the form D6/C2 × ∗;
– the three midpoints of edges of T form a 0-cell, D6/C2 × ∗;

• three 1-cells:
– the three line segments from a vertex to the centre of T are each

stabilised by a reflection, forming a cell D6/C2 × I;
– the three line segments from the centre to the midpoint of an edge are

also a D6/C2 × I;
– the 6 line segments from a vertex to the midpoint of an edge form a

free orbit D6/e× I;
• one 2-cell: T with the 0- and 1- cells described above removed is a free orbit

(6 connected components), D6/e×D2.

See Figure 2 for a diagram.
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2. The orbit category and Elmendorf’s Theorem

In addition to the Whitehead Theorem, G-CW complexes have other nice proper-
ties. One important such is that taking H-fixed points commutes with the construc-
tion of G-CW complexes (although the H-fixed points functor does not commute
with colimits in general). Remember, if we hope to understand weak equivalences
then we need to understand how to take H-fixed points.

Proposition 2.1. The functor (−)H commutes with

• pushouts where one map is a closed inclusion, and
• sequential colimits along closed inclusions.

In particular, (−)H commutes through the construction of a G-CW complex.

To understand the H-fixed points of a G-space given some G-CW structure, it
is thus sufficient to understand the H-fixed points of each cell separately. Doing so
amounts to computing

(G/K ×Dn)H = (G/K)H ×Dn = MapG(G/H,G/K)×Dn

so we really only need to understand fixed points of the form

(G/K)H = MapG(G/H,G/K).

We can package up all the mapping spaces we need into a convenient form, called
the orbit category.

Definition 2.2 (Orbit category). The orbit category OG is the full subcategory of
GTop on the objects G/H.

Mapping spaces in the orbit category have the form MapG(G/H,G/K), which we
want to understand. We claim that such maps correspond to elements g ∈ G pro-
ducing subconjugacy relations gHg−1 ⊆ K. A G-equivariant map f : G/H → G/K
is completely specified by where it sends the identity coset eH. Taking f(eH) = gK,
we get the relation

hgK = hf(eH) = f(heH) = f(eH) = gK

for every h ∈ H, which is equivalent to requiring g−1Hg ⊆ K. Two maps corre-
sponding to subconjugacy relations g−1

1 Hg1 ⊆ K and g−1
2 Hg2 ⊆ K are the same if

g1K = g2K.
Before discussing some examples of orbit categories, we state the main result

which explains why we care about them.

Theorem 2.3 (Elmendorf). The functor

Ψ : GTop→ Fun(Oop
G ,Top)

X 7→ (G/H 7→ XH)

induces an equivalence of ∞-categories.

The point of Elmendorf’s Theorem, for us, is that presheaves on the orbit cat-
egory gives a very concrete ∞-categorical model for GTop. To think of GTop as
an ∞-category another way, we localize at the G-weak equivalences, and while this
is formally easy to do, it can be hard to get one’s hands on the result. The orbit
category itself is easy to access, and this model of GTop as presheaves on the orbit
category is the one we want to use going forwards.
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Remark 2.4. If you are uncomfortable with the language of ∞-categories, you
should think of Elmendorf’s Theorem as saying that the homotopy theory of G-
spaces up to G-weak equivalence is the same as the homotopy theory of presheaves
on the orbit category, up to pointwise weak equivalence of topological spaces. Ex-
plicitly, this means that:

• homotopy limits and colimits behave the same, and
• the homotopy categories on the left and right are the same.

Another way to think about this result is that as 1-categories, it’s easy to see that
the left and right sides encode the same data. But the ∞-categorical structure on
the right turns out to be technically much easier to work with, so we prefer to use
it. Elmendorf’s Theorem tells us we are allowed to do this, since we will get the
same notion of weak equivalence either way.

Remark 2.5. The equivalence in Elmendorf’s Theorem comes from an adjunction,
with Ψ being right adjoint to evaluation at G/e.

Next we will see three examples of orbit categories.

Example 2.6 (O∗). Take G = ∗, then O∗ has a single object called ∗/∗ with unique
endomorphism the identity. A presheaf on this orbit category is just a topological
space X, so what Elmendorf’s Theorem is saying in this case is that the category
of G-spaces for G = ∗ is equivalent to Top itself, and a ∗-weak equivalence is the
same as a topological weak equivalence.

Example 2.7 (OC2
). Let G = C2. Then the orbit category OC2

has two objects,
C2/e and C2/C2. Since G is abelian, asking for a subconjugacy relation gHg−1 ⊆ K
is the same as asking for H ⊆ K, in which case we get C2/K distinct maps. We
have

MapC2(C2/e, C2/e) = C2,MapC2(C2/C2, C2/C2) = MapC2(C2/e, C2/C2) = {e},

while MapC2(C2/C2, C2/e) = ∅. We can depict this orbit category as

C2/e C2/C2

with a unique non-identity endomorphism of the non-terminal object C2/e.

Example 2.8 (OC2n
). Let G = C2n . Then G has precisely one cyclic subgroup of

size 2k for each 0 ≤ k ≤ n, and the poset of subgroup inclusions is totally ordered
by size. Again G is abelian, so we compute

|MapG(C2n/C2k , C2n/C2l)| =

{
2n−l k ≤ l
0 k > l.

The orbit category looks like

C2n/e . . . C2n/C2k C2n/C2k+1 . . . C2n/C2n

with an arrow whose codomain is C2n/C2k representing 2n−k distinct maps.
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3. Equivariance in families

Thus far, we have made many statements which we required to hold for all closed
subgroups H of G. Do we really always need to work with all closed subgroups?
What if we wanted to restrict to finite subgroups, or finite-index subgroups? Of
course, if we redefine G-CW complexes and G-weak equivalences in terms of some
restricted collection of subgroups of G, we will get a different homotopy theory.
Nonetheless, Elmendorf’s Theorem holds for such families.

Definition 3.1. A family F of subgroups of G means a collection of subgroups
closed under conjugation and taking subgroups (i.e. closed under subconjugacy
relations).

Given a family of subgroups F , we get induced homotopy theories on both sides
of Elmendorf’s Theorem.

• In GTop, a map f : X → Y is a weak equivalence if fH : XH → Y H is a
(topological) weak equivalence for all subgroups H ∈ F .
• In Fun(Oop

G ,Top), a weak equivalence is a map which is pointwise a topo-
logical weak equivalence, at all points G/H where H ∈ F .

Example 3.2. If we take F to be the collection of all subgroups of G, we recover
the notion of G-weak equivalence defined previously. If we take F = {e} to only
contain the identity subgroup, we get Borel weak equivalence. In between these
extremes, one might let F be the set of all finite subgroups of G.

In particular, ifG = S1 one often wants to consider the family of finite subgroups,
since fixed points under the Cn-action are often more easily understood than S1-
fixed points.

Remark 3.3. Elmendorf’s theorem is still true if we use some family F to specify
the weak equivalences on both sides.

Example 3.4 (Families in C2n). Consider again Example 2.8. Since a family must
be closed under taking subgroups, a family in C2n amounts to a choice of maximal
subgroup C2k , and has the form F = {e, C2, . . . , C2k}. Then restricting from all
subgroups of C2n to the family F is not the same as applying the forgetful functor
from C2n -spaces to C2k -spaces, because in the former case we retain a residual
Borel-equivariant C2n-action.

Remark 3.5. Elmendorf’s Theorem for a specific choice of family F will come up
later in the seminar, when we talk about isotropy separation and the slice spectral
sequence.
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