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Abstract. We state and give proofs of the key theorems from [Lev22], as well as explaining
the Land-Tamme � construction, introduced in [LT19] and used in a crucial way to obtain these
results. This is in aid of understanding K(LK(1)S), the height 2 counterexample to the telescope
conjecture. These notes are from a lecture given in the Harvard Thursday Seminar in February
2024, about the recent paper [BHLS23] disproving the telescope conjecture for all primes at
heights n ≥ 2.
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1. Introduction and main results

This lecture follows [Lev22] and [LT19]. Preliminaries include higher algebra (particularly
Chapter 7.1 in [Lur17]) and algebraic K-theory. Context in the Thursday Seminar: The coun-
terexample to the telescope conjecture at height 2 is K(Lk(1)S).

In this talk, we will see how to compute K(Lk(1)S), at least in terms of TC and some other
things we can understand. Recall that after T (n)-localising for n ≥ 2, we have LT (n)K(Lk(1)S) ∼=
LT (n)K(`hZ) where ` is the (p-complete) Adams summand1 of connective topological K-theory,

with Z-action via the Adams operation ψp+1. Concretely, we get:

Theorem A (Levy, p > 2). K(Lf1Sp) ∼= K(LK(1)S), there is a cofibre sequence split on π∗

K(`hZ) K(LK(1)S) ΣK(Fp)

and a pullback square

K(`hZ) TC(`hZ)

K(Zp) TC(ZhZp ).

y

Let F be the fibre of the map TC(`hZ) → TC(ZhZp ). Then F [1
p ] = 0, F is (2p − 2)-connective

and π2p−2(F/p) ∼=
⊕∞

0 Fp.

Remark 1.1. What does this theorem get us?

1We are assuming for simplicity that p 6= 2. Everything can be made to work at the prime 2 with ` replaced
by ko; for details of the necessary changes see [Lev22].

1
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(1) Looking T (n)-locally for n > 2,

LT (n)K(LK(1)S) ' LT (n)K(`hZ)
Cor.4.1' LT (n) TC(`hZ).

So we have reduced the computation we need for the disproof of the telescope conjecture
at height 2 to something about TC.

(2) After inverting p, the vertical fibres vanish. So K(`hZ)[1
p ] ' K(Zp)[1

p ] can be computed.

The split cofibre sequence on π∗ then allows us to compute π∗K(LK(1)S)[1
p ] in full.

(3) To understand K(LK(1)S) we just need to understand K(Fp), K(Zp), and the fibre F =

fib(TC(`hZ)→ TC(ZhZp )).

The only part of this theorem that we will use in the rest of the seminar is the pullback square.
This is an ingredient in the disproof of the telescope conjecture at height 2, see [BHLS23]. To
prove Theorem A, the main technical result we are going to need is a version of [DGM12] for
(−1)-connective rings.

Theorem B (Levy). Let f : R→ S be a map of connective E1-rings with a Z-action such that
f is 1-connective. Then for E any truncating invariant, E(RhZ) → E(ShZ) is an equivalence.
Moreover, if f is n-connective, then TC(RhZ)→ TC(ShZ) is too.

We also obtain the following variant:

Theorem C (Levy). Let R→ S be a 1-connective map of (−1)-connective rings such that π−1R
is a finitely generated π0R-module. Then for E any truncating invariant, E(R) → E(S) is an
equivalence.

2. Reducing Theorem B to an easier problem

Let us first review a couple of definitions used in the above theorem statements, and then our
first goal will be to come up with a strategy for proving Theorem B.

Definition 2.1 (localizing invariant). E : CatPerf → D is a localizing invariant if it commutes
with filtered colimits, inverts Morita equivalences, and sends an exact sequence A → B → B/A
to a fibre sequence in D. Here D is stable.

Definition 2.2 (truncating invariant). A localizing invariant E is truncating if for any connective
E1-ring spectrum A, we have E(A) ∼= E(π0A) via the canonical map.

Example 2.3. K-theory, TC, THH, etc. are localizing invariants; the fibre of the cyclotomic
trace, K inv := fib(trcyc : K → TC), is a truncating invariant (by Dundas-Goodwillie-McCarthy
applied to the map A→ π0A). K inv is going to be the key example in this talk.

For completeness, we state here two interesting results derived from [LT19] which will not be
used in the rest of the talk:

Theorem 2.4 ([LT19] nilinvariant). A truncating invariant E is nilinvariant: for every nilpotent
two-sided ideal I ⊆ A in a discrete unital ring A, E(A) ' E(A/I).

Theorem 2.5 ([LT19]). Suppose there exists n > 0 for a localizing invariant E such that E(R) '
E(τ6nR) for any connective E1-ring R. Then E is a truncating invariant.

We would now like to approach the problem of proving Theorem B. We note that a Z-action
is determined by an automorphism η. So we have the following pullback diagram:

RhZ R

R R×R.

y
(1,η)

∆
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Since RhZ is an extension of R×R[−1] by R×R and R is connective, RhZ is (−1)-connective.
Thinking of ShZ in terms of a similar pullback, we obtain a map of diagrams between the pullback
square for RhZ and that of ShZ, from which we may deduce that fhZ : RhZ → ShZ is 0-connective.

Question 2.6. If we apply a localizing invariant E to a pullback, is the resulting diagram still
a pullback?

Answer 2.7. No, but there is a method for modifying the original square so it becomes pullback
under E, given by the main theorem of [LT19].

Theorem 2.8 (Land-Tamme[LT19]). Consider

A C

B D

y a pullback square of E1-ring spec-

tra. Associated to this square there exists a natural E1-ring spectrum B �DA C with the following
properties: The original diagram extends to a commutative diagram of E1-ring spectra

A C

B B �DA C

D

and any localizing invariant sends the inner square to a pullback square.
The underlying spectrum of B �DA C is equivalent to B ⊗A C, and the underlying diagram of

spectra is the canonical one.

Remark 2.9. We may denote B�DA C as �, perhaps with single subscript, when the originating
pullback square is clear.

We will address the proof of Theorem 2.8 in Section 5 of the talk, but for now let’s use it to
reduce Theorem B to an easier problem. By Theorem 2.8, we have a map of pullback squares:

E(RhZ) E(R) E(ShZ) E(S)

E(R) E(�R) E(S) E(�S)

y “E(f)” y

where �R = R
R×R
�
RhZ

R. We want to show that E(RhZ) ∼= E(ShZ), so it is enough to show that

E(R) ∼= E(S) and E(�R) ∼= E(�S).

Proposition 2.10. In the setting of theorem B, E(f) : E(R)→ E(S) is an equivalence.

Proof. Consider the diagram

E(R) E(S)

E(π0R) E(π0S).

E(f)

' '

E(π0f)

'

Vertical arrows are equivalences from the definition of a truncating invariant, and the bottom
horizontal arrow is an equivalence since f is 1-connective. Thus, E(f) is also an equivalence. �

We are going to check �R and �S are connective and the induced map f̃ : �R → �S is 1-
connective. Then the same argument as Proposition 2.10 shows that E(f̃) is an equivalence. This
can all be done on the level of underlying spectra so we can work with f⊗f : R⊗RhZR→ S⊗ShZS

directly and not worry about what � really is. It also follows that TC(f̃) is 2-connective.
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3. Connectivity results and proof of Theorem B

Recall that we have a standard t-structure on ModA for some E1-ring A: the connective mod-
ules are objects generated under colimits and extensions by A (see [Lur17] Proposition 1.4.4.11).
The coconnected/coconnective objects are those with coconnected/coconnective underlying spec-
tra.

Lemma 1. (Levy) Let A be a (−1)-connective E1-ring spectrum, M an A-module with under-
lying spectrum connective. Then M is connective in the standard t-structure on A-modules.
In particular, if N is a right A-module with connective underlying spectrum then N ⊗A M is
connective.

Proof. For an A-module M with connective underlying spectrum, we want to show

M ∈ A-Mod>0 := τ>0(A-Mod).

Decompose as τ>0M →M → τ<0M .
The underlying spectrum of A is (−1)-connective, so τ>0M is too since it’s built from A via

colimits and extensions. M has a connective underlying spectrum by assumption. Hence after
rotating the triangle, τ<0M sits as an extension of connective spectra so is itself connective. But
it’s also coconnected by assumption, so it must be zero. Hence M = τ>0M is in the connective
part of the t-structure.

Now, M ⊗AN is built from A⊗AN = N out of colimits and extensions, and N is connective.
Then M ⊗A N is connective. �

Question 3.1. Which part of what we wanted to prove does this lemma address?

Answer 3.2. It shows R ⊗RhZ R and S ⊗ShZ S are connective, since R,S are connective by
assumption and RhZ, ShZ are (−1)-connective.

It remains to address the connectivity of the map f ⊗ f : R⊗RhZ R→ S ⊗ShZ S.

Lemma 2. (Levy) Suppose A→ A′ is an i-connective map of (−1)-connective E1-rings, i > −1.
Let M , N respectively be right and left A′- modules, then M ⊗A N → M ⊗A′ N is (i + 1)-
connective.

We’re going to finish the proof of Theorem B by factoring the map f ⊗ f into several parts
and addressing each separately. One of pieces is S ⊗RhZ S → S ⊗ShZ S, and we will use Lemma
2 to establish 1-connectivity of this piece.

Proof. M , N built from A′ under colimits and extensions. Thus, without loss of generality, we
may assume that M = N = A′. We then need only consider the connectivity of the multiplication
map µ : A′ ⊗A A′ → A′ ⊗A′ A′ = A′ = A⊗A A′.

It admits a section s induced by the left unit A→ A′, so fib(µ) = cofib(s). Connectivity of µ
is connectivity of fib(µ) by definition.

Let X := cofib(A→ A′), which is (i+ 1)-connective by assumption. Then cofib(s) = X ⊗AA′
is an extension of X ⊗A A = X by X ⊗A X. Since X ⊗A X = Ω−2i−2(Ωi+1X ⊗A Ωi+1X) is
(2i+ 2)-connective by Lemma 1, we see that cofib(s) is at least (i+ 1)-connective and fib(µ) is
too. Thus µ is (i+ 1)-connective. �

Now we are ready to finish the proof of Theorem B.

Proof of Theorem B. It remains only to show R⊗RhZ R→ S ⊗ShZ S is 1-connective. Factor as

R⊗RhZ S S ⊗RhZ S

R⊗RhZ R S ⊗ShZ S.
f⊗f

Notice that fhZ is 0-connective, so we can use Lemma 2 with i = 0 to see that the right
vertical map is 1-connective. Since RhZ is (−1)-connective, Lemma 1 tells us that the other
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two component maps are 1-connective because their fibres are. Thus the composite f ⊗ f is
1-connective. �

4. Computation of K(LK(1)S) and proof of Theorem A

We will now see some applications of Theorem B. We think of this result as a replacement
for Dundas-Goodwillie-McCarthy in situations where we are dealing with (−1)-connective rings.
Recall that K inv := fib(trcyc : K → TC) is truncating invariant. This is an easy consequence of
DGM, applied to the map R → π0R for a connective E1-ring R. Let’s use theorem B and see
what this buys us.

Corollary 4.1. Let R be a connective E1-ring with Z-action. LT (n)K(RhZ)
'→ LT (n) TC(RhZ),

n > 2.

Proof. π : RhZ → π0R is a 1-connective map of E1-rings. By Theorem B and the fact that K inv

is a truncating invariant, K inv(π) : K inv(RhZ)
'→ K inv((π0R)hZ) is an equivalence.

Claim. After T (n)-localizing, RHS vanishes, that is, LT (n)K
inv((π0R)hZ) ' 0.

Hence LHS also vanishes, so LT (n)K(RhZ)
'→ LT (n) TC(RhZ) as desired. �

Proof of the claim. We must show that K((π0R)hZ)→ TC((π0R)hZ) is a T (n)-local equivalence.
In fact, the domain and codomain both vanish T (n)-locally for n ≥ 2 because they each have
height ≤ 1. Note π0R has height ≤ 0, and π0R

hZ has finitely many nontrivial homotopy groups,
so is bounded above and thus also height 0. By purity results, K and TC shift height up by at
most 1, so K((π0R)hZ) and TC((π0R)hZ) have height ≤ 1. �

Remark 4.2. In last week’s talk, Maxime Ramzi outlined a proof of a similar result when RhZ is
replaced by something connective, using [DGM12]. But RhZ is not connective so we have really
achieved something new.

We now wish to prove Theorem A for p > 2. Recall that ` is the (p-complete) Adams summand
of connective topological K-theory, with Z-action via the Adams operation ψp+1. The underlying
spectrum of `hZ is the (−1)-connective cover of the K(1)-local sphere, and `hZ is an E∞-ring.
We will need the following technical ingredient for the proof of Theorem A:

Theorem 4.3 (Devissage, [BL21]). If R is a coconnective ring with π0 regular, and π−i has tor
dimension < i over π0, then the connective cover map π0R→ R is an equivalence on K-theory.

Proof of Theorem A (p > 2). The pullback square is an easy consequence of Theorem B. Since
` → Zp is a 1-connective map of connective E1-rings with Z action, K inv(`hZ) ' K inv(ZhZp ) by

Theorem B. Noting that K(ZhZp ) ∼= K(Zp), we get the pullback square. Theorem B also gives
the desired connectivity of F .

For the cofibre sequence, we start with the localization sequence Sp>n+1 → Sp→ Lfn Sp. Fix

n = 1 and tensor over Spω with Perf(`hZ). We get

Spω>2⊗Perf(`hZ)→ Perf(`hZ)→ Perf(Lf1`
hZ).

Now, Lf1(`hZ) ' LK(1)S, so after taking K-theory, we can identify the third term with

K(LK(1)S). The middle term yields K(`hZ). It remains to identify K(Spω>2⊗Perf(`hZ)) with
K(Fp).

By the thick subcategory theorem, any type 2 spectrum Z generates Spω>2, and then Z ⊗ `hZ
automatically generates Spω>2⊗Perf(`hZ). Choose Z so that Z⊗` = Fp, e.g. taking Z = S/(p, v1)

to be the Smith-Toda complex works. Then Z ⊗ `hZ = FhZp is coconnective with π0 = Fp. To

compute K(Spω>2⊗`hZ), we note that by Morita theory, K(Spω>2⊗`hZ) ∼= K(End(Z⊗`hZ)). This
endomorphism ring splits as a tensor product,

End(Z ⊗ `hZ) ∼= EndSp>2
(Z)⊗ End`hZ(`hZ) = Z ⊗ Z∨ ⊗ `hZ = Z∨ ⊗ FhZp .
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Now Z ⊗ Z∨ ⊗ `hZ is still coconnective with π0 = Fp, so by Theorem 4.3 its K-theory is the
K-theory of Fp. Putting everything together,

K(Spω>2⊗`hZ) ∼= K(Z ⊗ Z∨ ⊗ `hZ) ∼= K(Fp).
�

5. Land-Tamme construction of �

This section follows [LT19]. Recall that we are considering a pullback square of E1-ring spectra

A C

B D

y ,

and trying to replace D by some other E1-ring with a comparison map to D, so that the new
square becomes a pullback upon applying any localizing invariant E. We want to fill in the
diagram

E(A) E(C)

E(B) E(B �DA C)

E(D)

y

.

Definition 5.1 (Lax pullback). Given a diagram of (stable) ∞-categories B p→ D q← C, the
corresponding lax pullback B×→D C is the (stable) ∞-category defined by

B×→D C Fun(∆1,D)

B × C D ×D

y
(source, target) .

To be explicit, B×→D C has

• Objects: (b ∈ B, c ∈ C, f : p(b)→ q(c)).
• Mapping spaces:

Map

(
(b, c, f), (b′, c′, f ′)

)
MapC(c, c

′)

MapB(b, b′) MapD(p(b), q(c′))

y f∗q

f
′
∗p

from understanding a map g in B×→D C as a homotopy-commutative diagram

p(b) q(c)

p(b′) q(c′)

f

f ′

p(gB) q(gC) .

Remark 5.2. This is manifestly a functorial construction. Here are some more facts about the
lax pullback construction which we won’t prove, but which can be found in [Tam18].

(1) The arrow in the notation for the lax pullback denotes the artificial orientation we have
introduced between B and C. In particular, inside the lax pullback there is one-directional
hom-vanishing from C to B, Map((0, c, 0), (b, 0, 0)) = 0, but not vice versa.
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(2) Suppose B, C, D are stable, B and C are compactly generated presentable, D is cocom-
plete, p and q are exact and preserve small colimits, and p preserves compact objects.
Then B×→D C is compactly generated presentable with (B×→D C)ω = Bω ×→D Cω.

(3) Every object (x, y, f) of B×→D C sits in a fibre sequence (0, y, 0) → (x, y, f) → (x, 0, 0).
As a consequence, any set of generators of B together with generators of C will generate
B×→D C. This also works for compact generators.

Lemma 5.3. For E any localizing invariant, E(B×→D C) ' E(B)
⊕
E(C).

Proof. It is easy to check using the formula for mapping spaces that B f.f.
↪→ B×→D C, C

f.f.
↪→ B×→D C

and MapB×
→
D C

(C,B) = 0. Then we get a split exact sequence

C B×→D C B
jC prB

jBprC

a a

with pr denoting projection and j the fully faithful inclusions. It is easy to check the claimed
adjunctions by computing the relevant mapping spaces as pullbacks; note that the two adjunc-
tions aren’t symmetric in B and C. This split exact sequence exhibits B as the localization of
B×→D C at C. Since E is localizing invariant, E(B×→D C) ' E(C)

⊕
E(B) as desired. �

How are we going to use the lax pullback construction? Let’s consider the category M =
Perf(B)×→Perf(D) Perf(C). Then M is stable, presentable, and compactly generated by the two
objects (B, 0, 0) and (0, C, 0).

Lemma 5.4. iA : Perf(A) ↪→ M = Perf(B)×→Perf(D) Perf(C) with A 7→ (B,C, idD) is a fully
faithful embedding.

Proof. Perf(A) is generated by A = B ×D C. We check only a single mapping space in M,

MapM(iA(A), iA(A)) MapC(C,C) = C

B = MapB(B,B) MapD(D,D) = D

y

but this is the same diagram as the original pullback square, so the pullback is A = MapA(A,A).
�

Let Q := cofib(Perf(A) ↪→ Perf(B)×→Perf(D) Perf(C)) and π :M→Q the corresponding map.

Lemma 5.5. Q has a single generator, π(B, 0, 0) ∼ π(0, C, 0)

Proof. Since M is generated by (B, 0, 0) and (0, C, 0), we know that the images of these under
π together generated Q. Consider the fibre sequence (0, C, 0)→ (B,C, idD) = iA(A)→ (B, 0, 0)
in B×→D C. Then π(0, C, 0) = Ωπ(B, 0, 0) in Q, either one (compactly) generates Q. �

Definition 5.6. We can now define B�DA C = EndQ(π(0, C, 0)). Since Q is stable, it is enriched
in spectra and so the � construction naturally has the structure of an E1-ring.

We are now ready to prove Theorem 2.8, i.e. that B�DAC satisfies all of the properties claimed.

Proof of Theorem 2.8. Since Q is cocomplete and stable with B�DA C the endomorphism ring of
a compact generator, by Schwede-Shipley we have Q ' Perf(B�DAC). This gives us a localization
sequence

Perf(A)
iA−→ Perf(B)×→Perf(D) Perf(C)

π−→ Perf(B �DA C). (1)

Applying any localizing invariant E yields a fibre sequence
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E(Perf(A)) E

(
Perf(B)×→Perf(D) Perf(C)

)
E(Perf(B �DA C))

E(A) E(B)
⊕
E(C) E(B �DA C)

' ' '

(iB ,iC) πjB+πjC

This being a fibre sequence tells us that the square

E(A) E(C)

E(B) E(B �DA C)

y
iB

iC

πjC

πjB

is a pullback. Next we want to fill out the diagram

Perf(A) Perf(C)

Perf(B) Perf(B)×→Perf(D) Perf(C)

Perf(B �DA C)

Perf(D)

iB

iC

jC
kC

τ

ΩjB

kB

π

c

.

We proceed as follows:

• kB, kC are defined as compositions so the two triangles commute;
• the natural transformation τ : ΩjBiB → jCiC is induced by the fibre sequence (0, y, 0)→

(x, y, f)→ (x, 0, 0) for any object of the lax pullback;
• π(τ) is a natural equivalence (between two copies of Perf(A) inside Q) so the outer

diagram commutes;
• maps respect the preferred generators since kBiB(A) ' π(0, C, 0) ' kCiC(A) via π(τ);

• the map Perf(B)×→Perf(D) Perf(C)
c→ Perf(D) is obtained by taking the cofibre of the

map f in each object (x, y, f) of the lax pullback. This factors through Q, inducing the
map c which sends the generator π(0, C, 0) of Q to D.

One can check that the outer square obtained by pasting all the natural transformations together
is the same as that in the original pullback square of rings. Passing to the endomorphism ring
of our preferred generators everywhere fills out the diagram 2.8 we wanted.

Finally, we claimed that the underlying spectrum of B �DA C is equivalent to B ⊗A C. This is
a consequence of the following lemma below, from [LT19].

Lemma 5.7 ([LT19]). The Ind-completion of the localizing sequence (1) is split

Ind(Perf(A)) Ind(Perf(B)×→Perf(D) Perf(C)) Ind(Q)

RMod(A) RMod(B)×→RMod (D) RMod(C) RMod(B)�RMod(D) RMod(C)

'
iA

sA

π

r

' '

and π is a Bousfield localization, i.e. it admits a fully faithful right adjoint r. The localization
functor L = rπ is given by the cofibre cofib(iAsA(−)→ (−)) of the counit transformation of the
adjunction (iA, sA).
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By the lemma, we get a cofibre sequence of C-bimodules

MapM(jC(C), iAsAjC(C)) MapM(jC(C), jC(C)) MapM(jC(C), LjC(C))

C ' EndC(C) EndM(LjC(C)) ' B �DA C

' ' .

Let us denote I := iAsAjB(B), and then the above digram becomes the cofibre sequence

I ⊗A C C B ⊗A C

I ⊗A C C B �DA C

' '' .

Since B�DA C and B⊗A C are cofibres of the same map of C-bimodules, they agree on the level
of underlying spectra. �
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