Introduction to Quiver Representations

Isabel Longbottom

Australian National University

June 2021

Representations of quivers

Definition

A quiver Q is a finite directed graph, with vertices Q_0 and edges Q_1 . A representation v of Q is a choice of finite-dimensional vector space v(q) for each $q \in Q_0$, and linear map $v(\alpha)$ for each $\alpha \in Q_1$.

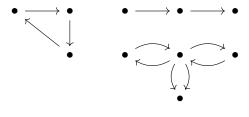


Figure 1: Three quivers

A representation is *simple* if it has no proper nonzero sub-representations, and *indecomposable* if it can't be written as the direct sum of two nonzero representations.

Example: The A_2 quiver

Consider the following quiver:

 $\bullet \longrightarrow \bullet$

What are the indecomposables?

$$k \to 0, \quad 0 \to k \quad \text{and} \quad k \xrightarrow{\sim} k$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Any representation can be decomposed in the following manner:

$$V_0 \stackrel{\alpha}{\rightarrow} V_1 \cong (\ker \alpha \to 0) \oplus (0 \to W_1) \oplus (W_0 \stackrel{\sim}{\rightarrow} \operatorname{im} \alpha)$$

where $V_0 = (\ker \alpha) \oplus W_0$ and $V_1 = (\operatorname{im} \alpha) \oplus W_1$.

Warm-up: What are the simple representations?

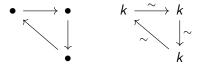
Theorem

If Q is an acyclic quiver (has no oriented cycles), then any simple representation v satisfies v(q) = 0 for every $q \in Q_0 \setminus \{q_i\}$, and $v(q_i) = k$ for a single vertex q_i .

The acyclicity hypothesis is necessary.

Example

A cyclic quiver and a simple representation thereof.

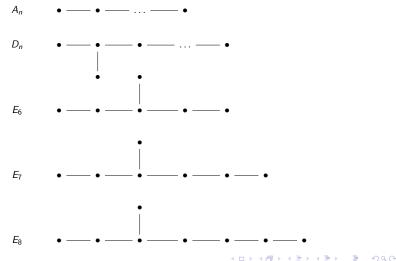


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Dynkin quivers

Definition

A Dynkin quiver is one whose underlying graph is of the following form:



Indecomposable representations of finite type quivers

Theorem (Gabriel)

The quivers with finitely many (isomorphism classes of) indecomposable representations are precisely the Dynkin quivers. Moreover, the indecomposable representations of such a quiver are in bijection with the positive roots in the root system corresponding to the underlying Dynkin diagram, with bijection given by taking the dimension vector.

Example $(A_3, \bullet \rightarrow \bullet \rightarrow \bullet)$

6 indecomposables, 3 of which are simple:

$$egin{array}{ll} k o 0 o 0, & 0 o k o 0, & 0 o 0 o k, \ k o k o k o 0, & 0 o k, \ k o k o k o k, & k o k, \ k o k o k o k. \end{array}$$