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Representations of quivers

Definition
A quiver Q is a finite directed graph, with vertices Qo and edges Q1. A
representation V' of Q is a choice of finite-dimensional vector space V/(q) for

each g € Qo, and linear map V/(a) for each o € Q1.
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Figure 1: Three connected quivers

Q-representations form an abelian category, Rep Q.
A representation is simple if it has no proper nonzero sub-representations, and
indecomposable if it can’t be written as the direct sum of two nonzero

representations.
The underlying graph I'(Q) is obtained by forgetting the orientations of arrows.



Some orientation-independent results

The following aspects of the representation theory of Q depend only on I'(Q):
» The simple representations of Q, if I'(Q) is acyclic.

> (Gabriel's theorem) Whether Q has finitely many isomorphism classes of
indecomposable representations.

» (Kac's theorem) The possible dimension vectors of indecomposable
representations.



Recovering Q from simples

Theorem
Let Q, Q" be acyclic quivers. Then Rep @ ~ Rep Q' if and only if Q = Q' as
directed graphs.

Q can be recovered from the homological algebra of simple objects.

» Simple representations are in bijection with vertices of Q; the simple at
x € Qo is denoted 5.

» dim Ext(S«, Sy) is the number of arrows from x to y in Q.

This works even when Q contains cycles, by looking at the 1-dimensional
simple objects.



Derived category of quiver representations

Given an acyclic quiver @, we consider the category Db(Rep Q). Objects are
bounded chain complexes of Q-representations, up to cohomology.
Think of objects as V = (V,)ncz where each V, is a Q-representation, and all
but finitely many components are zero. Morphisms V — W have components
of two forms:

> ¢, € Hom(V,, W,)

> 1, € Ext(V,, W,_1), thought of as a map V,, — W,_1[1] which travels

down one degree.

There is a (fully faithful) embedding Rep @ — D”(Rep @), in degree 0.



DP(Rep Q) is orientation-independent

Theorem
IFT(Q) =T (Q') is an acyclic graph, then D®(Rep Q) ~ D”(Rep Q’).

Since Rep @ — D’(Rep @), we obtain embeddings Rep Q' — D’(Rep Q)
for any Q' with the same underlying graph as Q, via these equivalences. We
will be able to compute these equivalences explicitly.



Reflections on Rep Q

Let x € Qo be a sink.
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We get a new quiver 0 Q with I'(Q) = I'(0xQ) by reversing all the arrows
incident at x. There is a reflection functor C; : Rep @ — RepoxQ. On
V € Rep Q, it is defined by:

> GV(y)=V(y) forx#y € Q
> C!V(x) is the kernel of the sum of maps incident at x:

0= G V(x) » @ V(ta) 5 V(x)

ae@
ha=x

where ¢ is the sum of the maps V(a) : V(ta) — V(x).



Reflections are not equivalences

Example (S is annihilated by C)
For any arrow with ha = x, we have ta # x since we disallow loops. So

S«(ta) =0, and

@ Sc(ta) = 0.

a€Q

ha=x
Therefore the subspace C; (S«) = 0. For any other vertex y # x,
CIS«(y) = Sx(y) =0. Thus G S = 0. Similarly for C; .

The reflection functors C : Rep Q@ — RepoxQ and C; : Repox@ — Rep Q
are not equivalences, because they both annihilate the 1-dimensional simple
representation S.



An example reflection

Consider CJ on Dj:

Here are the reflections of a selection of indecomposables.
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Derived reflections are equivalences

The reflections C;” and C; induce derived reflections

RC! : D°(Rep Q) — D°(RepoxQ)
LC; : D°(Repo @) — D°(Rep Q).

Theorem
When @ is acyclic, RC{ and LC; are inverse equivalences.

To define RC{ of an object V = (V,)nez, we find a bounded chain complex T
whose terms are injective objects, and such that Z ~ V in D®(Rep Q). Then
apply CJ to Z, and compute cohomology to determine the components of
RCHV.



Computation of a derived reflection

Example (RCS(Sx) on D)

We have an injective resolution of Sy:
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and the cohomology of this complex is H'(C{Z) = S,, H(C{Z) =0 for i # 1.
So
RCH(S:) = G/ T ~ HY(C{T)[-1] = S.[—-1]

since all the other cohomology pieces are 0. Here [—1] denotes a shift in degree.

In fact, we always have RCY(S) = Sc[—1].



Reflections are transitive on acyclic underlying graphs

Theorem

If G is an acyclic graph, then there is a sequence of reflections between any two
quivers @ and Q" withT(Q) = G =T(Q’).

Example (Reflections are transitive on orientations of D)
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