Reflections of Quiver Representations

Isabel Longbottom

Australian National University

November 2021

Representations of quivers

Definition

A quiver Q is a finite directed graph, with vertices Q_0 and edges Q_1 . A *representation* V of Q is a choice of finite-dimensional vector space V(q) for each $q \in Q_0$, and linear map $V(\alpha)$ for each $\alpha \in Q_1$.

Figure 1: Three connected quivers

Q-representations form an abelian category, Rep Q.

A representation is *simple* if it has no proper nonzero sub-representations, and *indecomposable* if it can't be written as the direct sum of two nonzero representations.

The underlying graph $\Gamma(Q)$ is obtained by forgetting the orientations of arrows.

The following aspects of the representation theory of Q depend only on $\Gamma(Q)$:

- The simple representations of Q, if $\Gamma(Q)$ is acyclic.
- (Gabriel's theorem) Whether Q has finitely many isomorphism classes of indecomposable representations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 (Kac's theorem) The possible dimension vectors of indecomposable representations.

Theorem

Let Q, Q' be acyclic quivers. Then $\operatorname{Rep} Q \simeq \operatorname{Rep} Q'$ if and only if $Q \cong Q'$ as directed graphs.

Q can be recovered from the homological algebra of simple objects.

Simple representations are in bijection with vertices of Q; the simple at $x \in Q_0$ is denoted S_x .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• dim $Ext(S_x, S_y)$ is the number of arrows from x to y in Q.

This works even when Q contains cycles, by looking at the 1-dimensional simple objects.

Given an acyclic quiver Q, we consider the category $\mathcal{D}^b(\operatorname{Rep} Q)$. Objects are bounded chain complexes of Q-representations, up to cohomology.

Think of objects as $V = (V_n)_{n \in \mathbb{Z}}$ where each V_n is a *Q*-representation, and all but finitely many components are zero. Morphisms $V \to W$ have components of two forms:

- ▶ $\phi_n \in \operatorname{Hom}(V_n, W_n)$
- ψ_n ∈ Ext(V_n, W_{n-1}), thought of as a map V_n → W_{n-1}[1] which travels down one degree.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

There is a (fully faithful) embedding Rep $Q \hookrightarrow \mathcal{D}^{b}(\text{Rep } Q)$, in degree 0.

$\mathcal{D}^{b}(\operatorname{Rep} Q)$ is orientation-independent

Theorem

If $\Gamma(Q) = \Gamma(Q')$ is an acyclic graph, then $\mathcal{D}^b(\operatorname{Rep} Q) \simeq \mathcal{D}^b(\operatorname{Rep} Q')$.

Since $\operatorname{Rep} Q \hookrightarrow \mathcal{D}^b(\operatorname{Rep} Q)$, we obtain embeddings $\operatorname{Rep} Q' \hookrightarrow \mathcal{D}^b(\operatorname{Rep} Q)$ for any Q' with the same underlying graph as Q, via these equivalences. We will be able to compute these equivalences explicitly.

Reflections on Rep Q

Let $x \in Q_0$ be a sink.

We get a new quiver $\sigma_x Q$ with $\Gamma(Q) = \Gamma(\sigma_x Q)$ by reversing all the arrows incident at x. There is a *reflection functor* C_x^+ : Rep $Q \to \text{Rep } \sigma_x Q$. On $V \in \text{Rep } Q$, it is defined by:

•
$$C_x^+V(y) = V(y)$$
 for $x \neq y \in Q_0$

• $C_x^+ V(x)$ is the kernel of the sum of maps incident at x:

$$0 \to C_x^+ V(x) \to \bigoplus_{\substack{\alpha \in Q_1 \\ h\alpha = x}} V(t\alpha) \xrightarrow{\xi} V(x)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where ξ is the sum of the maps $V(\alpha) : V(t\alpha) \to V(x)$.

Reflections are not equivalences

Example (S_x is annihilated by C_x^+)

For any arrow with $h\alpha = x$, we have $t\alpha \neq x$ since we disallow loops. So $S_x(t\alpha) = 0$, and

$$\bigoplus_{\substack{\alpha \in Q_1 \\ h\alpha = x}} S_x(t\alpha) = 0.$$

Therefore the subspace $C_x^+(S_x) = 0$. For any other vertex $y \neq x$, $C_x^+S_x(y) = S_x(y) = 0$. Thus $C_x^+S_x = 0$. Similarly for C_x^- .

The reflection functors C_x^+ : Rep $Q \to \text{Rep } \sigma_x Q$ and C_x^- : Rep $\sigma_x Q \to \text{Rep } Q$ are not equivalences, because they both annihilate the 1-dimensional simple representation S_x .

An example reflection

Here are the reflections of a selection of indecomposables.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Derived reflections are equivalences

The reflections C_x^+ and C_x^- induce derived reflections

$$\begin{aligned} & RC_x^+ : \mathcal{D}^b(\operatorname{Rep} Q) & \longrightarrow \mathcal{D}^b(\operatorname{Rep} \sigma_x Q) \\ & LC_x^- : \mathcal{D}^b(\operatorname{Rep} \sigma_x Q) & \longrightarrow \mathcal{D}^b(\operatorname{Rep} Q). \end{aligned}$$

Theorem

When Q is acyclic, RC_x^+ and LC_x^- are inverse equivalences.

To define RC_x^+ of an object $V = (V_n)_{n \in \mathbb{Z}}$, we find a bounded chain complex \mathcal{I} whose terms are injective objects, and such that $\mathcal{I} \simeq V$ in $\mathcal{D}^b(\operatorname{Rep} Q)$. Then apply C_x^+ to \mathcal{I} , and compute cohomology to determine the components of RC_x^+V .

Computation of a derived reflection

Example $(RC_x^+(S_x) \text{ on } D_4)$

We have an injective resolution of S_x :

$$0 \to S_x \to \left(E = \underset{1 \xrightarrow{\sim} 1 \\ 1 \xrightarrow{\sim} 1 \xrightarrow{\sim} 1} \right) \to S_a \oplus S_b \oplus S_c \to 0$$

So $\mathcal{I} := (E \to S_a \oplus S_b \oplus S_c) \simeq S_x \in \mathcal{D}^b(\operatorname{Rep} D_4)$. Computing $C_x^+ \mathcal{I}$ gives

since all the other cohomology pieces are 0. Here [-1] denotes a shift in degree.

In fact, we always have $RC_x^+(S_x) = S_x[-1]$.

Reflections are transitive on acyclic underlying graphs

Theorem

If G is an acyclic graph, then there is a sequence of reflections between any two quivers Q and Q' with $\Gamma(Q) = G = \Gamma(Q')$.

Example (Reflections are transitive on orientations of D_4)

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ⊙