Reflections of Quiver Representations

Isabel Longbottom

Australian National University

November 2021

KO K K Ø K K E K K E K V K K K K K K K K K

Representations of quivers

Definition

A quiver Q is a finite directed graph, with vertices Q_0 and edges Q_1 . A representation V of Q is a choice of finite-dimensional vector space $V(q)$ for each $q \in Q_0$, and linear map $V(\alpha)$ for each $\alpha \in Q_1$.

Figure 1: Three connected quivers

Q-representations form an abelian category, Rep Q.

A representation is simple if it has no proper nonzero sub-representations, and indecomposable if it can't be written as the direct sum of two nonzero representations.

The *underlying graph* $\Gamma(Q)$ is obtained by forgetting the orientations of arrows.

Some orientation-independent results

The following aspects of the representation theory of Q depend only on $\Gamma(Q)$:

- \blacktriangleright The simple representations of Q, if $\Gamma(Q)$ is acyclic.
- \triangleright (Gabriel's theorem) Whether Q has finitely many isomorphism classes of indecomposable representations.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \triangleright (Kac's theorem) The possible dimension vectors of indecomposable representations.

Recovering Q from simples

Theorem

Let Q, Q' be acyclic quivers. Then Rep Q \simeq Rep Q' if and only if Q \cong Q' as directed graphs.

Q can be recovered from the homological algebra of simple objects.

 \triangleright Simple representations are in bijection with vertices of Q; the simple at $x \in Q_0$ is denoted S_x .

KORKARYKERKER POLO

In dim Ext(S_x, S_y) is the number of arrows from x to y in Q.

This works even when Q contains cycles, by looking at the 1-dimensional simple objects.

Given an acyclic quiver Q , we consider the category $\mathcal{D}^b(\mathsf{Rep}\,Q)$. Objects are bounded chain complexes of Q-representations, up to cohomology.

Think of objects as $V = (V_n)_{n \in \mathbb{Z}}$ where each V_n is a Q-representation, and all but finitely many components are zero. Morphisms $V \rightarrow W$ have components of two forms:

- \blacktriangleright $\phi_n \in$ Hom (V_n, W_n)
- $\triangleright \psi_n \in \text{Ext}(V_n, W_{n-1})$, thought of as a map $V_n \to W_{n-1}[1]$ which travels down one degree.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

There is a (fully faithful) embedding Rep $Q\ \hookrightarrow\ \mathcal{D}^b(\mathsf{Rep}\:Q)$, in degree 0.

$\mathcal{D}^{b}(\mathsf{Rep}\:Q)$ is orientation-independent

Theorem If $\Gamma(Q) = \Gamma(Q')$ is an acyclic graph, then $\mathcal{D}^b(\mathsf{Rep}\,Q) \simeq \mathcal{D}^b(\mathsf{Rep}\,Q').$

Since Rep $Q \; \hookrightarrow \; \mathcal{D}^b(\mathsf{Rep}\,Q)$, we obtain embeddings Rep $Q' \; \hookrightarrow \; \mathcal{D}^b(\mathsf{Rep}\,Q)$ for any Q^\prime with the same underlying graph as Q , via these equivalences. We will be able to compute these equivalences explicitly.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Reflections on Rep Q

Let $x \in Q_0$ be a sink.

We get a new quiver $\sigma_x Q$ with $\Gamma(Q) = \Gamma(\sigma_x Q)$ by reversing all the arrows incident at $x.$ There is a *reflection functor* C_x^+ : Rep $Q \to \mathsf{Rep}\, \sigma_\mathsf{x} Q$. On $V \in \text{Rep }Q$, it is defined by:

$$
\blacktriangleright C_x^+V(y)=V(y) \text{ for } x\neq y\in Q_0
$$

 \blacktriangleright $C_x^+V(x)$ is the kernel of the sum of maps incident at x:

$$
0 \to C_{x}^{+}V(x) \to \bigoplus_{\substack{\alpha \in Q_{1} \\ h\alpha=x}} V(t\alpha) \stackrel{\xi}{\to} V(x)
$$

KOD KAR KED KED E YOUN

where ξ is the sum of the maps $V(\alpha): V(t\alpha) \to V(x)$.

Reflections are not equivalences

Example $(S_x$ is annihilated by C_x^+)

For any arrow with $h\alpha = x$, we have $t\alpha \neq x$ since we disallow loops. So $S_{x}(t\alpha) = 0$, and

$$
\bigoplus_{\substack{\alpha \in Q_1 \\ h\alpha = x}} S_{\scriptscriptstyle \mathcal{X}}(t\alpha) = 0.
$$

Therefore the subspace $C_{x}^{+}(S_{x})=0$. For any other vertex $y\neq x$, $C_x^+ S_x(y) = S_x(y) = 0$. Thus $C_x^+ S_x = 0$. Similarly for C_x^- .

The reflection functors $\,\mathcal{C}^+_x$: Rep $Q\to {\sf Rep}\,\sigma_{\sf x} Q\,$ and $\,\mathcal{C}^-_x$: Rep $\sigma_{\sf x} \,Q\to {\sf Rep}\, Q$ are not equivalences, because they both annihilate the 1-dimensional simple representation S_{x} .

KORKAR KERKER SAGA

An example reflection

Consider C_x^+ on D_4 : b $a \longrightarrow x \longleftarrow c$

Here are the reflections of a selection of indecomposables.

イロト イ押ト イヨト イヨト 299 Þ

Derived reflections are equivalences

The reflections C_{x}^{+} and C_{x}^{-} induce derived reflections

$$
RC_x^+ : \mathcal{D}^b(\text{Rep }Q) \longrightarrow \mathcal{D}^b(\text{Rep } \sigma_x Q)
$$

\n $LC_x^- : \mathcal{D}^b(\text{Rep } \sigma_x Q) \longrightarrow \mathcal{D}^b(\text{Rep }Q).$

Theorem

When Q is acyclic, RC_{x}^{+} and LC_{x}^{-} are inverse equivalences.

To define RC_{x}^+ of an object $\mathsf{V}=(\mathsf{V}_n)_{n\in\mathbb{Z}}$, we find a bounded chain complex $\mathcal I$ whose terms are injective objects, and such that $\mathcal{I} \simeq V$ in $\mathcal{D}^b(\mathsf{Rep}\,Q)$. Then apply C_x^+ to \mathcal{I} , and compute cohomology to determine the components of $RC_x⁺V.$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Computation of a derived reflection

Example $(RC_x^+(S_x)$ on $D_4)$

We have an injective resolution of S_{x} :

$$
0 \to S_x \to \left(E = \begin{array}{c} 1 \\ \downarrow \\ 1 \stackrel{\sim}{\longrightarrow} 1 \stackrel{\sim}{\longleftarrow} 1 \end{array} \right) \to S_a \oplus S_b \oplus S_c \to 0
$$

So $\mathcal{I}:=(E\to S_a\oplus S_b\oplus S_c)\simeq S_\mathsf{x}\in\mathcal{D}^b(\mathsf{Rep}\, D_4).$ Computing $\mathcal{C}_\mathsf{x}^+\mathcal{I}$ gives

$$
\uparrow \qquad \qquad 0 \qquad \qquad 1 \qquad \qquad 0
$$
\n
$$
1 \leftarrow 2 \longrightarrow 1 \qquad 1 \leftarrow \qquad 1 \longrightarrow 0 \qquad 0 \leftarrow 1 \longrightarrow 0 \qquad 0 \longrightarrow 1 \leftarrow \qquad 1
$$
\nand the cohomology of this complex is $H^1(C_x^+ \mathcal{I}) = S_x$, $H^i(C_x^+ \mathcal{I}) = 0$ for $i \neq 1$.

So

$$
RC_x^+(S_x) = C_x^+ \mathcal{I} \simeq H^1(C_x^+ \mathcal{I})[-1] = S_x[-1]
$$

since all the other cohomology pieces are 0. Here $[-1]$ denotes a shift in degree.

KOD KAD KED KED E VOOR

In fact, we always have $RC_{x}^{+}(S_{x}) = S_{x}[-1]$.

Reflections are transitive on acyclic underlying graphs

Theorem

If G is an acyclic graph, then there is a sequence of reflections between any two quivers Q and Q' with $\Gamma(Q) = G = \Gamma(Q').$

Example (Reflections are transitive on orientations of D_4)

 2990