
Mathematics is the art of giving the same
name to different things.

Henri Poincaré

SYLOW THEOREMS FOR ∞-GROUPS

ISABEL LONGBOTTOM, 28 NOVEMBER 2023

Abstract. Taking the fundamental group gives an equivalence of categories between pointed
topological spaces whose homotopy groups πn for n 6= 1 all vanish, and groups. From this
perspective, group theory can be viewed as the truncation of a more general theory of pointed
connected spaces. Then the natural question is: to what extent can we do group theory in
this new homotopical setting (where we don’t require the higher homotopy groups to vanish)?
In this talk, we will translate the Sylow theorems for finite groups to the context of finite ∞-
groups, and use this to get a group-theoretic classification of finite nilpotent spaces, by analogy
to the classification of finite nilpotent groups. We will also discuss the failure of normality for
∞-groups, as something of a cautionary tale.

Outline

(1) statement of classical Sylow theorems
(2) ∞-groups (and ∞-groupoids)
(3) translation of Sylow theorems to ∞-groups
(4) idea of proof, and one thing that goes wrong
(5) an application

These notes were prepared for a talk I gave at the Trivial Notions seminar at Harvard, a
graduate student-led seminar designed to be accessible to all graduate students regardless of
their particular mathematical interests. Essentially all of the content is drawn from the paper
of the same name by Prasma and Schlank, [1].

1. Classical Sylow Theorems

Recall the following definition:

Definition 1.1. Let H ⊂ G be finite groups, and p a prime number. H is called a p-Sylow
subgroup of G if H is a p-subgroup of maximal possible order (i.e. |H| = pk where |G| = mpp

k

with mp coprime to p).

Note that p-Sylow subgroups can be trivial, if p - G. Classically, the Sylow theorems are
stated as follows.

Theorem 1.2 (Sylow Theorem). Let G be a finite group. For each prime p, let np denote the
number of p-Sylow subgroups of G. Then

(1) np ≡ 1 mod p and in particular, a p-Sylow subgroup exists.
(2) For fixed p, all p-Sylow subgroups are conjugate to one another.
(3) For a p-group H, any map H → G factors through some p-Sylow subgroup of G.
(4) With mp be the index of a p-Sylow subgroup in G, we have np | mp.

Remark 1.3. Some notes:

• It is immediate from 2 that all p-Sylow subgroups have the same order, and therefore
the same index mp in G. So 4 only depends on G, not a particular choice of p-Sylow
subgroup in G.
• Our ∞-group version of this theorem will contain analogous statements to 1, 2, and 3.

We won’t get an analogous statement for 4, because we won’t be able to come up with
a sensible definition of index for ∞-groups.
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2. What is an ∞-group?

The idea of this section is that we would like to be able to do group theory with topological
spaces. A functorial way to associate a group with a (connected) topological space is via the
fundamental group. We will generalise this by also incorporating higher homotopy groups.

Let G be a group. One can construct a space BG, its classifying space, with homotopy groups

πn(BG) =

{
G n = 1

∗ else,

at least when G is discrete. The amazing fact is that taking the fundamental group is left
adjoint to the classifying space functor, when we restrict to pointed connected spaces. Or more
simply, homotopy classes of pointed continuous maps BG → BH are in bijection with group
homomorphisms G→ H.

Theorem 2.1. There is an equivalence of categories between groups and pointed connected spaces
whose higher homotopy groups πn, n ≥ 2 all vanish.

Definition 2.2. We call a space n-truncated if πk is trivial for all k > n.

So, groups are really the same thing as 1-truncated pointed connected spaces. We need
connected here so that there is only one possible associated fundamental group, independent of
the point at which we compute it. We need pointed so that maps between such objects agree.

Now, if we want to understand topological spaces, we can’t restrict ourselves to those which
are 1-truncated. Discarding all the higher homotopical information identifies spaces which we
want to think of as distinct.

Example 2.3. The spaces S2 and D2 are both connected, so we can think of them as pointed
connected by arbitrarily choosing a basepoint. Then both spaces have the same (trivial) funda-
mental group, but D2 is contractible while S2 is not, so they are not homotopically the same.
We need information about the (not all trivial) higher homotopy groups of S2 to distinguish
them.

From now on we will use 1-group to mean group, where the ‘1’ here refers to the fact that
the corresponding space is 1-truncated. Then there is a natural generalisation where we allow
some or all of the higher homotopy groups to be non-vanishing.

Definition 2.4. An n-group is a pointed connected n-truncated space. An∞-group is a pointed
connected space (we no longer require any of the higher homotopy groups to vanish). A pair
of ∞-groups are isomorphic if there is a map between them inducing an isomorphism on every
homotopy group (i.e. if they are weak homotopy equivalent) and similarly for n-groups.

There are many settings (e.g. disconnected spaces) where we need to talk about the funda-
mental groupoid rather than the fundamental group.

Definition 2.5. A (1-)groupoid is a category where all the morphisms are isomorphisms.

Definition/Theorem 2.6. A group is a pointed, connected groupoid (with pointed maps
between groups).

The same relationship is true for n-groups and ∞-groups. We have the following technical
definition.

Definition 2.7. The category of ∞-groupoids is obtained from the category of topological
spaces by inverting weak homotopy equivalences. That is, we impose the condition that any
map which induces an isomorphism on all homotopy groups is an equivalence of ∞-groupoids.
(This is a localisation.) An ∞-group is then a pointed, connected ∞-groupoid, and a map of
∞-groups is a map of ∞-groupoids which respects the chosen basepoints.
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Remark 2.8. We want ∞-groupoids to behave like the fundamental groupoid of a topological
space, but preserve higher homotopical information. Definition 2.7 is in some sense the simplest
thing we can do which achieves this.

You should think of an ∞-groupoid as a homotopy type, in the sense that it is a (nice)
topological space up to homotopy. The term space is also used to mean ∞-groupoid.

Remark 2.9. In between 1-groupoids and∞-groupoids, there is a notion of n-groupoid for each
n. The n here means that we throw away all the information about homotopy groups above n.
There are also truncation functors

∞-Gpd→ n-Gpd

for each n, and compatible truncations (n+ 1)-Gpd→ n-Gpd. These are called Postnikov trun-
cations. The same holds with ‘groupoid’ replaced everywhere by ‘group’, since the truncation
of a pointed connected space is connected and naturally inherits the basepoint.

Remark 2.10. It is reasonable to call these things we have constructed ∞-groupoids because
one can show that all the maps are invertible (in the same way that paths are invertible when
forming the fundamental 1-groupoid).

3. Translation of Sylow Theorems to ∞-Groups

First we will need to make several definitions. We need to understand – in the context of
∞-groups – what Sylow subgroups should be, what finite means, and how to count the number
of p-Sylow subgroups. The only thing we know how to do with∞-groups is take their homotopy
groups, so everything we need will be defined in terms of this.

Definition 3.1. An ∞-group is called finite if all its homotopy groups are finite. A finite ∞-
group is called a p-∞-group if all its homotopy groups are p-groups. A map of finite ∞-groups
f : P→ G is called a p-Sylow map if for each n ≥ 1, the induced map of homotopy groups

πn(f) : πn(P)→ πn(G)

is the inclusion of a p-Sylow subgroup.

Finally, we want to count the p-Sylow subgroups of an ∞-group G. Let Np denote the
collection of p-Sylow maps P→ G. What kind of object is Np? Well, the collection of all maps
of p-∞-groups H → G is an ∞-groupoid, and we want the full subcategory spanned by maps
which happen to be p-Sylow. Full subcategories of ∞-groupoids already have the property that
all their morphisms are invertible, so these turn out to also be ∞-groupoids. So Np comes
equipped with the structure of an ∞-groupoid, i.e. it is a homotopy type.

But it turns out that Np is actually discrete – it has the homotopy type of a finite disjoint
union of points. So, we can really think of Np as a number by counting the points. This is the
number of p-Sylow subgroups.

Theorem 3.2 (∞-Sylow Theorem). Let G be a finite ∞-group. Fix a prime p, and let Np be
the ∞-groupoid of p-Sylow maps P→ G. Then

(1) Np is discrete and equivalent to the set of p-Sylow subgroups of π1(G). In particular,
|π0Np| ≡ 1 mod p and there exists a p-Sylow map.

(2) Any two p-Sylow maps are conjugate.
(3) For a finite p-∞-group H, any map H→ G factors through some p-Sylow map P→ G.

Remark 3.3. We said that Np was finite discrete, i.e. as a homotopy type it is a finite union
of points. We can think of it as the set consisting of these points. Then |π0Np| just counts the
size of this set.
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The fact that we have this theorem justifies our definition of a p-Sylow map of∞-groups. We
see that p-Sylow maps really are maximal (by 3 and 2), even though, unlike in the finite case,
we didn’t define them to be maximal.

If you have been paying attention, you’ll notice that we haven’t defined everything we need
to state this theorem. Can someone tell me what is left to do?

Definition 3.4. Let B aut∗G denote the automorphism∞-groupoid of G at the base object (i.e.
pointed automorphisms). Just as a 1-group acts on itself by conjugation, there is a canonical
map conj : G→ B aut∗G which we think of as conjugation.

Going back to our key example G = BG for a finite group G, the above conjugation induces

G = π1(BG) = π1(G)
π1(conj)−→ π1(B aut∗G) = π1(B aut∗BG) = π1(B autG) = autG

and this agrees with our usual notion of conjugation. So this is really a generalisation of the
conjugation map for 1-groups.

Definition 3.5. A pair of ∞-group maps f : H → G, f ′ : H′ → G′ are conjugate if H and H′
are isomorphic via a conjugation of G. That is, there exist equivalences ψ : G '→ G, ϕ : H '→ H
making the diagram

H H′

G G

ϕ,'

f f ′

ψ,'

commute, and where [ψ] ∈ π0(aut∗G) = π1(B aut∗G) lies in the image of

π1(conj) : π1(G)→ π1(B aut∗G).

4. Idea of proof

We will not give the proof of Theorem 3.2. However, in an attempt to indicate some of the
flavour of the proof, we state the main technical result used and indicate how the theorem then
follows.

Fix a finite ∞-group G, a p-∞-group H, and a map of ∞-groups f : H→ G.

Definition 4.1. We denote by Nf the∞-groupoid spanned by factorisations of f as H→ P→ G
with the second map being p-Sylow.

Why should this be an ∞-groupoid? It’s the full sub-∞-groupoid of the ∞-category of all
factorisations of f . In particular, when f : ∗ → G is the unique (pointed) map, then Nf is the
space of all p-Sylow maps to G.

Notation: Let Np = N∗→G be this space of p-Sylow maps to G.

Aside 4.2. The ∞-category of all factorisations, Fact(f), can be computed as a pullback of
∞-categories via the diagram

Fact(f) {f}

∞-Grp∆2 ∞-Grp∆1

[02]∗

.

Now, applying the (Postnikov) truncation functors which we discussed earlier, we obtain a
tower

Nf → . . .→ Nf [n+ 1]→ Nf [n]→ . . .→ Nf [1]
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where Nf [n] denotes the truncation so that

πk(Nf [n]) =

{
πk(Nf ) k ≤ n
0 k > n.

Note also that Nf = limNf [n].

Lemma 4.3. For n ≥ 1, the map Nf [n + 1] → Nf [n] is an equivalence (its fibres are all
contractible). Hence the ∞-groupoid Nf is equivalent to the 1-groupoid Nf [1], and in particular
discrete.

Aside 4.4. We can reinterpret this lemma as follows. Given a diagram

H G

H[n] Pn G[n]

f

where the bottom row is an element of Nf [n], we can consider the∞-groupoid S of completions
of the diagram to

H P G

H[n] Pn G[n]

where P→ G is a p-Sylow map and P→ Pn is the n-Postnikov truncation. Then S is contractible,
i.e. there is essentially a unique way to choose the map P→ G to be compatible with the diagram.

This reinterpretation is the version of the lemma that is proved in [1].

Now we are ready to prove Theorem 3.2 using Lemma 4.3.

Proof. From Lemma 4.3, we know Nf ' Nf [1]. The RHS has no nontrivial homotopy groups
above π1, which means Nf is discrete, and equivalent to the set of factorisations

π1(f) : π1(H)→ P → π1(G)

where P → π1(G) is a p-Sylow subgroup inclusion (of ordinary groups). But this is the same as
the set of p-Sylow subgroups of π1(G) that contain the image of π1(H). This set is nonempty
because the image of π1(H) is a p-subgroup of π1(G), so must be contained in a maximal p-
subgroup. This proves 3.

Now for 1 we consider f : ∗ → G and the corresponding ∞-groupoid Np. We see that Np is
discrete and equivalent to the set of p-Sylow subgroups of π1(G).

Note 2 also follows essentially immediately from Lemma 4.3, also by considering Np. �

Example 4.5. When G = BG for a finite group G, we can recover the classical Sylow theorem
1.2 from Theorem 3.2. This is essentially immediate by applying π1 everywhere.

Despite everything we have seen, the analogy between Theorem 3.2 and the classical Sylow
theorems is not perfect. We mentioned previously that the classical Sylow theorem 1.2 includes
an additional condition 4 that np | mp, the index of any Sylow subgroup. This is not replicated
for ∞-groups because we don’t have a sensible notion of index in this setting.

But there is actually a much more serious failing, which stems from the following. A normal
subgroup of a 1-group can be defined in two equivalent ways: either as the kind of subgroup by
which we can quotient, or as subgroup whose conjugates all recover the subgroup itself. In the
setting of ∞-groups, both of these definitions make sense, but they are no longer equivalent.

Definition 4.6. A map of ∞-groups f : P→ G is called normal if there exists a fibre sequence
P→ G→ Q. We think of Q as some sort of quotient of G by f , denoted Q = G//P.
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Note that a fibre sequence induces a long exact sequence on homotopy groups.
Here is the problem: it can occur that G has a unique p-Sylow subgroup P → G, but this

subgroup is not normal. In such case it is still true that all of the conjugates of P are P itself,
but this is not enough to guarantee that an appropriate quotient of G by P exists.

Example 4.7. Let A = {0,±1} be the (Z/2)-module with 3 elements and non-trivial action. Let
X = K(A, 2)//Z/2. We interpret this as follows: π0(Z/2) = Z/2 i.e. 2 points, and πn(Z/2) = 0
for n ≥ 1. Since K(A, 2) is an Eilenberg-MacLane space, π2(K(A, 2)) = A = Z/3 is a group
with 3 elements, and all its other homotopy groups are trivial. Then it follows from the long
exact sequence that π2(X) = A and π1(X) = Z/2, with other homotopy groups trivial.

Since π1(X) = Z/2 is abelian, it has a unique 2-Sylow subgroup Z/2. By Theorem 3.2, there
is therefore a unique 2-Sylow map BZ/2 → X, which is an isomorphism on π1. We claim that
this map is not normal.

Suppose it were normal, with quotient Y . Then from the long exact sequence corresponding
to BZ/2→ X → Y , we find that π2(Y ) = Z/3 and all other homotopy groups are trivial. This
means Y = K(Z/3, 2) is the only possible choice for the quotient. But there is no fibre sequence
diagram

BZ/2→ K(A, 2)//Z/2→ K(Z/3, 2),

by the functoriality of the π1-action.
It is a general fact that π1(Z) acts on all the higher homotopy groups. For any map f : W → Z,

the induced map πn(f) : πn(W )→ πn(Z) is compatible with the π1-actions. We know that the
map π2(X) → π2(Y ) is an isomorphism A → A, because π2(BZ/2) = 0. The π1-action on the
left is the nontrivial action of π1(X) = Z/2 on A, while the action on the right is trivial since
π1(K(Z/3, 2)) = 0. Hence compatibility with the π1-action is impossible.

The relevant section of the long exact sequence on homotopy groups is

0 = π2(BZ/2)→ π2(X)→ π2(Y )→ π1(BZ/2)
'→ π1(X)→ π1(Y )→ π0(BZ/2) = 0.

The converse is still true: a normal map P → G has no nontrivial conjugates. So normality
(i.e. having a quotient) for ∞-groups is strictly stronger than the property that all conjugates
recover the original map.

5. One application

In this section, we present another classical result and its ∞-group analog. The proof is by a
direct application of the Sylow Theorem for∞-groups, and induction along the Postnikov tower.

Definition 5.1. An ∞-group G is nilpotent if π1G is nilpotent and acts nilpotently on πnG for
every n ≥ 2.

The concept of nilpotence for spaces is actually very important and arises in many places in
homotopy theory.

Here is the classical theorem characterising nilpotent finite groups.

Theorem 5.2. Let G be a finite group. The following are equivalent:

(1) G is nilpotent.
(2) G is isomorphic to the product of its Sylow subgroups.
(3) All Sylow subgroups of G are normal.

As a corollary, finite nilpotent groups are precisely (finite) products of p-groups. Now, we
have an ∞-group analog:

Theorem 5.3. Let G be a finite ∞-group, and G = π1(G). The following are equivalent:

(1) G is nilpotent.
(2) G '

∏
p|G Pp, each Pp → G being a p-Sylow map.

(3) All p-Sylow maps Pp → G are normal.
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Here we mean normal in the strong sense, that is an appropriate quotient G//Pp exists. Just
requiring that there be a unique p-Sylow map for each prime p is strictly weaker than either
of the three conditions in the theorem, although it is equivalent in the 1-group case. Also note
that requiring all p-Sylow maps to G to be normal is the same thing (via the Sylow theorem)
as requiring that for each prime p | G, there exists some normal p-Sylow map to G.

Proof. First, 2 =⇒ 3 is clear via the projection map out of the product.
For 3 =⇒ 1, notice that each p-Sylow subgroup of G = π1(G) is normal and thus by

the classical version of the theorem, π1(G) is nilpotent. Also, by an induction on the LES of
Pp → G → G//Pp, we know that πn(G) ∼=

∏
p|G πn(Pp) for every n ≥ 1. From the LES, we

can also deduce that π1(Pp) acts trivially on the prime-to-p part of πn(G), i.e. the only part
of the action of π1(G) on πn(G) which can be nontrivial comes from each π1(Pp) acting on the
corresponding πn(Pp). But this action is nilpotent because π1(Pp) is a p-group and πn(Pp) has
p-power order.

Finally, we must show 1 =⇒ 2. Argue by induction on the (Postnikov) n-truncations of
G. If G is already 1-truncated, the result is immediate from Theorem 5.2. Now assume the
product formula G[n] '

∏
p|G Pp[n] holds for any nilpotent n-truncated group, and consider

some G[n+ 1]. We have a pullback square

G[n+ 1] Bπ1(G)

G[n] K(πn+1(G), n+ 2)//π1(G)

which you can think of as extending G[n] up to G[n + 1] by adding on the homotopy group
πn+1(G). The three terms other than G[n+ 1] all split as products in the desired way (G[n] by
the induction hypothesis) and the maps between them respect the product structure. So the
pullback G[n + 1] splits as a product. Explicitly, the whole diagram decomposes as a product
of diagrams of the form

Pp[n+ 1] Bπ1(Pp)

Pp[n] K(πn+1(Pp), n+ 2)//π1(Pp)

and so we find that G '
∏
p|G Pp[n+ 1].

An arbitrary finite ∞-group is the limit of its n-truncations, so the statement follows here
too. �
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